Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа села Камышла муниципального района Камышлинский Самарской области

РАБОЧАЯ ПРОГРАММА

элективного курса по физике «Познай физику в задачах»

для учащихся 11 класса

Составила: учитель физики Россихина Л.К.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО). Составлена на основе примерной рабочей программы Физика. 10 класс. Базовый и углубленный уровни. Методическое пособие с указаниями к решению задач повышенной трудности. Л.Э Гендельштеин, А.А. Булатова, А.В. Кошкина, И.Н. Корнильев. .М.: «БИНОМ.. Лаборатория знаний», 2018 г.

Программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Решение физических задач — один из основных методов обучения физике. С помощью решения задач обобщаются знания о конкурентных объектах и явлениях, создаются и решаются проблемные ситуации, формируют практические и интеллектуальные умения, сообщаются знания из истории, науки и техники, формируются такие качества личности, как целеустремленность, настойчивость, аккуратность, внимательность, дисциплинированность, развиваются эстетические чувства, формируются творческие способности. В период ускорения научно — технического процесса на каждом рабочем месте необходимы умения ставить и решать задачи науки, техники, жизни. Поэтому целью физического образования является формирования умений работать с школьной учебной физической задачей. Последовательно это можно сделать в рамках предлагаемой ниже программы.

Программа элективного курса согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса физики общеобразовательной школы. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений.

Настоящий элективный курс предназначен для учащихся 10 классов, стремящихся углубить свои знания базового курса физики, более глубоко и осмысленно изучать практические и теоретические вопросы физики. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности, в ней рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно измерительных материалов по ЕГЭ. Общая продолжительность курса составляет 34 часа. 1 час в неделю.

Цель элективного курса – развитие физического мышления, научного мировоззрения школьников.

Задачи курса:

- создание условий для формирования основных мыслительных операций учащихся, развитие продуктивного творческого мышления;
- формирование общих приемов и способов интеллектуальной и практической деятельности при решении задач;
- создание условий для развития самостоятельности мышления, способности к самореализации;
- формирование познавательного интереса к предмету;
- подготовка учащихся с поступлению в вузы на специальности физико-математического и технического профилей;
- добиться определенного уровня сформированности умения решения задач.

Основные уровни:

- первый уровень умение анализировать содержание задачи, его, выполнять отдельные операции, общие для большого класса задач;
- второй уровень овладение операциями, связанными с особенностями использования различных способов решения задач (вычислительных, графических, качественных, экспериментальных);
- третий уровень овладение системой способов и методов решения задач, алгоритмами решения задач по конкретным темам разделов физики и общим алгоритмом решения задач;
- четвертый уровень овладение новыми способами решения физических задач, умению применять общий алгоритм к решению задач по темам и разделам;
- пятый уровень умение переноса структуры деятельности по решению физических задач на решение задач по другим предметам естественного цикла (химии, биологии, астрономии)

Учащиеся, в ходе занятий:

приобретут навыки самостоятельной работы;

овладеют умениями анализировать условие задачи, переформулировать и заменять исходную задачу другой задачей или делить на подзадачи;

научатся составлять алгоритм (или план) решения, доказывать и подтверждать выдвигаемые гипотезы.

Основные виды деятельности учащихся:

- 1. Разбор задач на занятиях вместе с учителем.
- 2. Самостоятельная отработка аналогичных задач по данной теме.
- 3. Самостоятельное составление алгоритма решения новой задачи.
- 4.Самостоятельное конструирование своих задач (в виде презентаций или компьютерных программ, иллюстрирующих влияние изменений параметров системы на ее состояние).

ФОРМЫ И СРЕДСТВА КОНТРОЛЯ.

Для реализации целей и задач данного элективного курса предполагается использовать следующие формы занятий: - вводные лекции по основам методологии решения физических задач; практикумы по решению задач, самостоятельная работа учащихся, консультации, зачет. На занятиях применяются коллективные и индивидуальные формы работы: постановка, решения и обсуждения решения задач, подготовка к единому государственному тестированию, - семинары-практикумы по решению задач: работа в группах; подбор и составление задач на тему и т.д. Предполагается также выполнение домашних заданий по решению задач.

Ожидаемый результат

В результате освоения предлагаемого курса у учащихся должны выработаться навыки: по использованию системного подхода к решению физических задач, умению самостоятельно работать со справочной и учебной литературой различных источников информации, применению математических знаний и навыков для сдачи абитуриентского экзамена по физике, расширению знаний об основных алгоритмах решения задач, различных методах и приемах.

Средства обучения

Основными средствами обучения при изучении курса являются:

- физические приборы;
- графические иллюстрации (схемы, чертежи, графики);
- дидактические материалы;
- учебники физики для старших классов средней школы;
- учебные пособия по физике, сборники задач.

Организация самостоятельной работы

Самостоятельная работа предполагает создание дидактического комплекса задач, решенных самостоятельно на основе использования конкретных законов физических теорий, фундаментальных физических законов, методологических принципов физики, а также методов экспериментальной, теоретической и вычислительной физики из различных сборников задач с ориентацией на профильное образование учащихся.

Общие подходы к решению физических задач

Решая физические задачи, ребята должны иметь представление о том, что их работа состоит из трёх последовательных этапов:

- 1) анализа условия задачи (что дано, что требуется найти, как связаны между собой данные и искомые величины и т. д.),
- 2) собственно решения (составления плана и его осуществление),
- 3) анализа результата решения.

Главная цель анализа - определить объект (или систему), который рассматривается в задаче, установить его начальное и конечное состояние, а также явление или процесс, переводящий его из одного состояния в другое. Выяснить причины изменения состояния и определить вид взаимодействия объекта с другими телами (это помогает объяснить физическую ситуацию, описанную в условии, и дать её наглядное представление в виде рисунка, чертежа, схемы). Заканчивается анализ содержания задачи краткой записью условия с помощью буквенных обозначений физических величин (обязательно указываются наименования их единиц в системе СИ).

Приступая к решению задачи, надо напомнить ученикам о необходимости иметь план действий: представлять себе, поиск каких физических величин приведёт к конечной цели.

Алгоритм решения физических задач

- 1. Внимательно прочитай и продумай условие задачи.
- 2. Запиши условие в буквенном виде.
- 3. Вырази все значения в СИ.
- 4. Выполни рисунок, чертёж, схему.
- 5. Проанализируй, какие физические процессы, явления происходят в ситуации, описанной в задаче, выяви те законы (формулы, уравнения), которым подчиняются эти процессы, явления.
- 6. Запиши формулы законов и реши полученное уравнение или систему уравнений относительно искомой величины с целью нахождения ответа в общем виде.
- 7. Подставь числовые значения величин с наименование единиц их измерения в полученную формулу и вычисли искомую величину.
- 8. Проверь решение путём действий над именованием единиц, входящих в расчётную формулу.
- 9. Проанализируй реальность полученного результата

Содержание программы «Познай физику в задачах»

34 часа

1. Правила и примы решения физических задач (1 час)

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

2. Основы термодинамики (4 часов)

Внутренняя энергия одноатомного газа. Работа и количество теплоты.

Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

3. Электродинамика (18 часов)

Электрическое и магнитное поля. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Алгоритм решения задач: динамический и энергетический. Решение задач на описание систем конденсаторов.

Задачи разных видов на описание магнитного поля тока: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Законы постоянного тока. Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений.

Электрический ток в различных средах. Электрический ток в металлах, газах, вакууме. Электролиты и законы электролиза. Решение задач на движение заряженных частиц в электрическом и электромагнитных полях: алгоритм движения по окружности, движение тела, брошенного под углом к горизонту, равновесие тел.

Электромагнитные колебания. Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Уравнение гармонического колебания и его решение на примере электромагнитных колебаний. Решение задач на характеристики колебаний, построение графиков.

Переменный электрический ток: решение задач методом векторных диаграмм.

Проверочная работа по теме «Электродинамика».

4. Волновые и квантовые свойства (9 часов)

Задачи по геометрической оптике: зеркала, призмы, линзы, оптические схемы. Построение изображений в оптических системах.

Задачи на описание различных свойств электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация.

Классификация задач по СТО и примеры их решения.

Квантовые свойства света. Алгоритм решения задач на фотоэффект.

Состав атома и ядра. Ядерные реакции. Алгоритм решения задач на расчет дефекта масс и энергетический выход реакций, закон радиоактивного распада.

Тестирование по теме «Волновые и квантовые свойства света».

5. Итоговая работа с элементами ЕГЭ - 2 часа.

Календарно-тематическое планирование.

№ п/п	Кол- во часов	Тема	Вид деятельности
1	1	Что такое физическая задача? Классификация физических задач.	Лекция, практическая работа. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.
2	1	Внутренняя энергия и количество теплоты.	Решение задач на нахождение внутренней энергии одноатомного газа, работы и количества теплоты.
3	1	Решение задач на нахождение количества теплоты и уравнение теплового баланса.	Применение алгоритма при решении задач на уравнение теплового баланса.
4-5	2	Тепловые двигатели. Расчет КПД тепловых установок.	Решение задач; анализ решения задач. Графический способ решения задач
6-7	2	Закон сохранения электрического заряда. Закон Кулона.	Решение задач по алгоритму на сложение электрических сил с учетом закона Кулона в вакууме и среде.
8-9	2	Напряженность и потенциал электрического поля.	Решение задач на принцип суперпозиции полей (напряженность, потенциал). Решение задач по алгоритму на сложение полей.
10	1	Электроемкость плоского конденсатора.	Решение задач на описание систем конденсаторов.
11-12	2	Магнитное поле тока. Сила Ампера и сила Лоренца.	Решение задач разных видов на описание магнитного поля тока и его действия: вектор магнитной индукции и магнитный поток, сила Ампера и сила Лоренца
13-14	2	Движение заряженных частиц в магнитных и электромагнитных полях	Применение алгоритма при решение задач на движение заряженных частиц в электромагнитных полях.
15-16	2	Законы последовательного и параллельного соединений.	Задачи на различные приемы расчета сопротивления сложных электрических цепей (смешанных).
17	1	Закон Ома.	Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи.
18	1	Закон Джоуля-Ленца.	Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Джоуля

			 — Ленца, расчет КПД электроустановок.
19	1	Электрический ток в жидкостях, в вакууме и газах. Движение зараженных частиц в электрических и электромагнитных полях.	Лекция. Решение задач.
20-21	2	Закон электромагнитной индукции, правило Ленца, индуктивность.	Задачи разных видов на описание явления электромагнитной индукции и самоиндукции. Решение задач.
22	1	Обобщение по теме «Электродинамика»	Анализ и разбор наиболее трудных задач по электродинамике.
23	1	Проверочная работа по теме «Электродинамика»	Тест в форме ЕГЭ
24-25	2	Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление.	Семинар. Решение задач.
26-27	2	Задачи по геометрической оптике: зеркала, призмы, линзы, оптические схемы.	Семинар. Практическая работа. Построение изображений в зеркале, призме, линзе. Самостоятельная работа.
28-29	2	Интерференция, дифракция, поляризация, дисперсия света.	Задачи на описание различных свойств электромагнитных волн: интерференция, дифракция, поляризация, дисперсия.
30-31	2	Состав атома и ядра. Ядерные реакции.	Решение задач на атомную и ядерную физику. Алгоритм решения задач на расчет дефекта масс и энергетический выход реакций, закон радиоактивного распада.
32	1	Тестирование по теме «Волновые и квантовые свойства света»	тест
33-34	2	Итоговая работа с элементами ЕГЭ	Итоговый тест

ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Приказ Минобрнауки России от 6.10.2009 г. № 413 «Об утверждении и введении в действие федерального государственного образовательного стандарта среднего общего образования».
- 2. Приказ Минобрнауки России от 29.12.2014 г. № 1645 «о внесении изменений в приказ Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего (полного) общего образования»».
- 3. Примерная основная образовательная программа среднего общего образования. Одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).
- 4. Контрольно-измерительные материалы. Физика: 11 класс / Сост. Н.И.Зорин. М.: ВАКО, 2012. 112 с.
- 5. Рымкевич А.П. Сборник задач по физике. 9-11 кл. М.: Просвещение, 2008.
- 6. Янушевская, Н.А., Повторение и контроль знаний по физике на уроках и внеклассных мероприятиях, 10 11 классы. М.: Глобус; Волгоград: Панорама, 2009. 240 с.
- 1. Физика. 10, 11 класс: Учебник для общеобразовательных учреждений. Базовый и углубленный уровень 2 части. Л.Э Гендельштеин, А.А. Булатова, А.В. Кошкина, И.Н. Корнильев. «Бином. Лаборатория знаний», 2018.
- 2. КИМы физика 10 класс. сост. Н.И.Зорин. Москва «ВАКО» 2014
- 3. Контрольные и проверочные работы по физике. 7-11 кл.: Метод.пособие / О.Ф.Кабардин, С.И.Кабардина, В.А.Орлов. М.: Дрофа, 2013