УТВЕРЖДАЮ
 ПРОВЕРЕНО
 РАССМОТРЕНО на МО

 Директор ГБОУ СОШ с.
 Зам. директора по УР
 учителей естественнонаучного цикла

 Примаз 1/8 уот в маниста 2020г.
 Дес сергина и до вергина в маниста 2020г.
 Протокол № от 08.2020

 автуста 2020г.
 Дес сергина в мо
 От 08.2020

 Каномова А.Х.
 От 20 вергина в мо

РАБОЧАЯ ПРОГРАММА

по химии

(УГЛУБЛЕННЫЙ УРОВЕНЬ) 10-11 КЛАССЫ

Учителя Каюмовой А.Х.

Рабочая программа составлена на основе требований к результатам освоения основной образовательной программы среднего общего образования, представленных в Федеральном государственном образовательном стандарте среднего общего образования и примерной программы по химии среднего общего образования. УМК

- 1) Рабочая программа к линии УМК В.В.Лунина: учебно-методическое пособие /В.В.Еремин, А.А.Дроздов, И.В. Еремина Ю, Э.Ю.Керимов. –М.: Дрофа, 2017.
- 2) учебник -Еремин В. В., Кузьменко Н. Е., Теренин В. И., Дроздов А. А., Лунин В. В. Химия 10 класс (углубленный уровень); Дрофа, 2019
- Еремин В. В., Кузьменко Н. Е., Дроздов А. А., Лунин В. В.Химия 11 класс (углубленный уровень), Дрофа, 2019

Место курса химии в учебном плане

Программа по химии для среднего общего образования на углубленном уровне рассчитана на 102 часа (3 часа в неделю, 204 часов за два года обучения).

Цели изучения химии в средней школе

- 1. Формирование умения видеть и понимать ценность образования, значимость химического знания для каждого человека, независимо от его профессиональной деятельности;
- 2. Формирование умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- 3. Формирование целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности (природной, социальной, культурной, технической среды), используя для этого химические знания:
- 4. Приобретение опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, навыков безопасного обращения с веществами в повседневной жизни).

Общая характеристика учебного предмета

В системе среднего общего образования химию относят к предметной области «Естественные науки». Особенности содержания обучения химии в средней школе обусловлены спецификой химии, как науки, и поставленными задачами. Основными проблемами химии являются:

- изучение состава и строения веществ, зависимости их свойств от строения;
- получение веществ с заданными свойствами;
- исследование закономерностей химических реакций и путей управления ими в целях получения необходимых человеку веществ, материалов, энергии. Поэтому в программе по химии нашли отражение *основные содержательные линии*:
- «вещество» знания о составе и строении веществ, их важнейших физических и имических свойствах, биологическом действии;
- «химическая реакция» знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;
- «применение веществ» знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной жизни, широко используются в промышленности, сельском хозяйстве, на транспорте;
- «язык химии» система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических и органических веществ, т. е. их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с родного или русского языка на язык химии и обратно. В результате изучения

курса химии выпускник средней школы освоит содержание, способствующее формированию познавательной, нравственной и эстетической культуры. Учащийся овладеет системой химических знаний — понятиями, законами, теориями и языком науки как компонентами естественнонаучной картины мира. Все это позволит ему сформировать на основе системы полученных знаний научное мировоззрение как фундамент ценностного, нравственного отношения к природе, окружающему миру, своей жизни и здоровью, осознать роль химической науки в познании и преобразовании окружающего мира, выработать отношение к химии как возможной области будущей собственной практической деятельности. Усвоение содержания курса химии обеспечит выпускнику возможность совершенствовать и развивать познавательные возможности, умение управлять собственной познавательной деятельностью; интеллектуальные и рефлексивные способности; применять основные интеллектуальные операции такие, как формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей для изучения свойств веществ и химических реакций; использовать различные источники для получения химической информации; самостоятельно планировать и организовывать учебно-познавательную деятельность; развивать исследовательские, коммуникативные и информационные умения. Особенности структуры и логики построения курса химии нашли свое отражение в учебниках линии, которые отличаются от аналогичных сочетанием научной строгости изложения и широкой направленностью на применение химических знаний в повседневной жизни и в жизни общества. В учебниках реализуется системно-деятельностный подход, лежащий в основе ФГОС. Этот подход ориентирован на конкретные результаты образования, как системообразующий компонент стандарта, где развитие личности учащегося на основе усвоения универсальных учебных действий, познания и освоения мира составляет цель и основной результат образования.

Изучение химии в 10 и 11 классах построено по линейной схеме. В 10 классе излагается материал органической химии, а в 11 классе — неорганическая химия, общая химия, химическая технология. Последние главы учебника 11 класса знакомят школьников с применением химии в окружающей жизни и на службе обществу. Систематический курс органической химии в 10 классе предваряет раздел, направленный на обобщение и повторение полученных в основной школе знаний. В нем также даются те сведения из общей и неорганической химии, которые необходимы для изучения органической химии, но не вошли в программу основной школы. Курс органической химии построен традиционно. Он начинается с основных понятий органической химии, затем излагается структурная теория органических соединений, рассматривается их электронное строение. Потом изучаются важнейшие классы органических соединений: углеводороды, кислородсодержащие соединения, азот- и серосодержащие соединения. Систематическое изложение строения и свойств органических соединений позволяет перейти к биологически активным веществам — углеводам, жирам, белкам и нуклеиновым кислотам. Заканчивается курс органической химии рассказом о полимерах и их использовании в быту и в технике. Материал по неорганической химии в 11 классе изучается в следующей последовательности. Сначала рассмотрены элементы-неметаллы, затем элементыметаллы. Изучение элементов металлов предваряет раздел, систематизирующий общие свойства металлов — элементов и простых веществ, а также рассказывающий о сплавах. Рассмотрение общей химии начинается со строения атома и химической связи. На основе полученных знаний школьники знакомятся со строением вещества, изучают различные виды химической связи, включая межмолекулярные, и основные типы кристаллических решеток простых веществ и ионных соединений. Затем следует материал, рассказывающий о закономерностях протекания химических реакций. Здесь сочетаются сведения из химической термодинамики и химической кинетики, позволяющие понять, почему и как протекают химические реакции. Следующая тема курса иллюстрирует применение полученных знаний о закономерностях протекания химических реакций на практике. Речь идет о различных типах химических производств. Обсуждая общие принципы химической технологии и рассматривая конкретные производства, авторы не забывают и о проблеме охраны окружающей среды,

знакомят школьников с новым подходом в практическом применении химических знаний зеленой химией. Изучение школьного курса химии завершается рассказом о применении химических знаний в различных областях науки и техники о необходимости бережного отношение к природе и к окружающему миру. Методический аппарат учебников включает инструментарий, обеспечивающий не только овладение предметными знаниями и умениями, но и личностное развитие учащихся. Он помогает формировать интерес к науке, чувство гордости за отечественную науку, знакомит с вкладом российских ученых в развитие химии, способствует усвоению новых знаний, поиску и переработке новой информации. Важная роль отводится демонстрационным опытам, лабораторным и практическим работам, которые характеризуют экспериментальные аспекты химии и развивают практические навыки учащихся. В конце учебников приводится справочный материал. Вопросы, задачи и задания, предложенные для закрепления знаний в конце каждого параграфа, являются разноуровневыми, в том числе проблемными и метапредметными, рассчитаны на активную роль учащегося, на решение проблем в реальных жизненных ситуациях. Особое внимание уделяется организации проектной деятельности школьников и приобретению опыта участия в дискуссиях. В качестве ценностных ориентиров химического образования выступают объекты, изучаемые в курсе химии, к которым у учащихся формируется ценностное отношение. При формировании ценностных ориентиров большое значение имеют познавательные, коммуникативные и базовые ценности.

коммуникативные и оазовые ценности. Ведущую роль играют **познавательные ценности**, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы. Основу познавательных ценностей составляют научные знания и научные методы познания, при этом при изучении химии познавательные ценностные ориентации,

- в признании ценности научного знания, его практической значимости, достоверности;
- в понимании ценности химических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к истине. Развитие познавательных ценностных ориентаций содержания курса химии позволяет сформировать:
- уважительное отношение к созидательной, творческой деятельности;
- понимание необходимости здорового образа жизни;

формируемые у учащихся, проявляются:

- потребность в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательный выбор будущей профессиональной деятельности. Курс химии обладает возможностями для формирования

коммуникативных ценностей. Основу коммуникативных ценностей составляют общение в образовательном процессе, умение пользоваться химической терминологией и символикой, грамотная письменная и устная речь, умение и потребность вести диалог, выслушивать мнение собеседника и (или) оппонента, участвовать в дискуссиях, способность открыто выражать и аргументированно отстаивать свою точку зрения. При изучении учебного предмета «Химия» раскрываются также базовые ценности: ценность знания, стремление к истине, научная картина мира, любовь к Родине, творчество, целеустремленность, уважение к труду, осознание прогресса человечества.

Результаты обучения и освоения содержания курса химии

Деятельность образовательного учреждения общего образования в обучении химии в средней общей школе должна быть направлена на достижение обучающимися следующих **личностных результатов**: 1) в ценностно-ориентационной сфере — чувство гордости за российскую химическую науку, гуманизм, целеустремленность, воспитание ответственного отношения к природе, осознание необходимости защиты окружающей среды, стремление к здоровому образу жизни;

2) в трудовой сфере — готовность к осознанному выбору дальнейшей образовательной или профессиональной траектории;

3) в познавательной (когнитивной, интеллектуальной) сфере — умение управлять своей познавательной деятельностью.

Метапредметными результатами освоения выпускниками средней (полной) общей школы программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применении основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- 3) умение генерировать идеи и определять средства, необходимые для их реализации;
- 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.
- В области **предметных результатов** образовательное учреждение общего образования предоставляет ученику возможность на ступени среднего общего образования при изучении химии научиться:

на углубленном уровне:

в познавательной сфере:

- 1) давать определения изученных понятий;
- 2) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- 3) объяснять строение и свойства изученных классов неорганических и органических соединений;
- 4) классифицировать изученные объекты и явления:
- 5) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- 6) исследовать свойства неорганических и органических веществ, определять их принадлежность к основным классам соединений;
- 7) обобщать знания и делать обоснованные выводы о закономерностях изменения свойств веществ;
- 8) структурировать учебную информацию;
- 9) интерпретировать информацию, полученную из других источников, оценивать ее научную достоверность;
- 10) объяснять закономерности протекания химических реакций, прогнозировать возможность их протекания на основе знаний о строении вещества и законов термодинамики;
- 11) объяснять строение атомов элементов I—IV периода с использованием электронных конфигураций атомов;
- 12) моделировать строение простейших молекул неорганических и органических веществ, кристаллов;
- 13) проводить расчеты по химическим формулам и уравнениям;
- 14) характеризовать изученные теории;
- 15) самостоятельно добывать новое для себя химическое знание, используя для этого доступные источники информации; в ценностно-ориентационной сфере: прогнозировать, анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ; в трудовой

сфере:самостоятельно планировать и проводить химический эксперимент, соблюдая правила безопасной работы с веществами и лабораторным оборудованием; в сфере основ безопасности

жизнедеятельности: оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

КРИТЕРИИ ОЦЕНКИ ПРЕДМЕТНЫХ,

МЕТАПРЕДМЕТНЫХ И ЛИЧНОСТНЫХ РЕЗУЛЬТАТОВ

Достижение личностных результатов оценивается на качественном уровне (без отметки). Сформированность метапредметных и предметных умений оценивается в баллах по результатам текущего, тематического и итогового контроля, а также по результатам выполнения контрольных, практических и лабораторных работ.

СОДЕРЖАНИЕ,

Тема 1. Повторение и углубление знаний (18ч)

Атомно-молекулярное учение. Вещества молекулярного и немолекулярного строения. Качественный и количественный состав вещества. Молярная и относительная молекулярная массы вещества. Мольная доля и массовая доля элемента в веществе. Строение атома. Атомная орбиталь. Правила заполнения электронами атомных орбиталей. Валентные электроны. Периодический закон. Формулировка закона в свете современных представлений о строении атома. Изменение свойств элементов и их соединений в периодах и группах. Химическая связь. Электроотрицательность. Виды химической связи. Ионная связь. Ковалентная неполярная и полярная связь. Обменный и донорно-акцепторный механизм образования ковалентной полярной связи. Геометрия молекулы. Металлическая связь. Водородная связь. Агрегатные состояния вещества. Типы кристаллических решеток: атомная, молекулярная, ионная, металлическая. Расчеты по формулам и уравнениям реакций. Газовые законы. Уравнение Клайперона—Менделеева. Закон Авогалро. Закон объемных отношений. Относительная плотность газов. Классификация химических реакций по различным признакам сравнения. Изменение степени окисления элементов в соединениях. Окислительно-восстановительные реакции. Окисление и восстановление. Окислители и восстановители. Метод электронного баланса. Перманганат калия как окислитель. Важнейшие классы неорганических веществ. Генетическая связь между классами неорганических соединений. Реакции ионного обмена. Гидролиз. рН среды. Растворы. Способы выражения количественного состава раствора: массовая доля (процентная концентрация), молярная концентрация. Коллоидные растворы. Эффект Тиндаля. Коагуляция. Синерезис. Комплексные соединения. Состав комплексного иона: комплексообразователь, лиганды. Координационное число. Номенклатура комплексных соединений.

Демонстрации. 1. Образцы веществ молекулярного и немолекулярного строения. 2. Возгонка иода. 3. Определение кислотности среды при помощи индикаторов. 4. Эффект Тиндаля. 5. Образование комплексных соединений переходных металлов.

Пабораторные опыты. 1. Реакции ионного обмена. 2. Свойства коллоидных растворов. 3. Гидролиз солей. 4. Получение и свойства комплексных соединений.

Практическая работа № 1. Выполнение экспериментальных задач по теме «Реакционная способность веществ в растворах».

Контрольная работа № 1 по теме «Основы химии».

Тема 2. Основные понятия органической химии (13ч)

Предмет органической химии. Особенности органических веществ. Значение органической химии. Причины многообразия органических веществ. Углеродный скелет, его типы: циклические, ациклические. Карбоциклические и гетероциклические скелеты. Виды связей в молекулах органических веществ: одинарные, двойные, тройные. Изменение энергии связей между атомами углерода при увеличении кратности связи. Насыщенные и ненасыщенные соединения. лектронное строение и химические связи атома углерода. Гибридизация орбиталей, ее типы для органических соединений: sp3, sp2, sp. Образование σ- и π-связей в молекулах органических соединений. сновные положения структурной теории органических со-

единений. Химическое строение. Структурная формула. Структурная и пространственная изомерия. Изомерия углеродного селета. Изомерия положения. Межклассовая изомерия. Виды пространственной изомерии. Оптическая изомерия. Оптические антиподы, хиральность. Хиральные и ахиральные молекулы. Геометрическая изомерия (цис-, транс-изомерия). Гомология. Гомологи. Гомологическая разность. Гомологические ряды. Электронные эффекты. Способы записей реакций в органической химии. Схема и уравнение. Условия проведения реакций. Классификация реакций органических веществ по структурному признаку: замещение, присоединение, отщепление. Механизмы реакций. Способы разрыва связи углерод-углерод. Свободные радикалы, нуклеофилы и электрофилы. Классификация органических веществ и реакций. Основные классы органических соединений. Классификация органических веществ и вазимное влияние атомов и групп атомов. Индуктивный и мезомерный эффекты. Представление о резонансе. Номенклатура органических веществ. Международная (систематическая) номенклатура органических веществ, ее принципы. Рациональная номенклатура. Окисление и восстановление в органической химии.

Демонстрации. 1. Модели органических молекул.

Тема 3. Углеводороды (25 ч)

Алканы в природе. Синтетические способы получения алканов. Методы получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот. Применение алканов.

Ц и к л о а л к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена.

Алкадие е ны. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола. Алкины. Общая характеристика. Строение молекулы ацетилена. Физические и химические свойства алкинов. Реакции присоединения галогенов, галогеноводородов, воды. Гидрирование. Тримеризация и димеризация ацетилена. Кислотные свойства алкинов с концевой тройной связью. Ацетилиды. Окисление алкинов раствором перманганата калия. Применение ацетилена. Карбидный метод получения ацетилена. Пиролиз метана. Синтез алкинов алкилированием ацетилидов.

А р е н ы. Понятие об ароматичности. Правило Хюккеля. Бензол — строение молекулы, физические свойства. Гомологический ряд бензола. Изомерия дизамещенных бензолов на примере ксилолов. Реакции замещения в бензольном ядре (галогенирование, нитрование, алкилирование). Реакции присоединения к бензолу (гидрирование, хлорирование на свету). Особенности химии алкилбензолов. Правила ориентации заместителей в реакциях замещения. Бромирование и нитрование толуола. Окисление алкилбензолов раствором перманганата калия.

Галогенирование алкилбензолов в боковую цепь. Реакция Вюрца—Фиттига как метод синтеза алкилбензолов. Стирол как пример непредельного ароматического соединения.

Природныеисточники углеводородов.

Природный и попутный нефтяные газы, их состав, использование. Нефть как смесь углеводородов. Первичная и вторичная переработка нефти. Риформинг. Каменный уголь. Генетическая связьмеждуразличнымиклассамиуглеводороды. Качественные реакции на непредельные углеводороды.

Галогено производные водные углеводородом. Реакции замещения галогена на гидроксил, нитрогруппу, цианогруппу. Действие на галогенпроизводные водного и спиртового раствора щелочи. Сравнение реакционной способности алкилвинил-, фенил- и бензилгалогенидов. Использование галогенпроизводных в быту, технике и в синтезе. Понятие о магнийорганических соединениях. Получение алканов восстановлением иодалканов иодоводородом. Магнийорганические соединения.

Демонстрации. 1. Бромирование гексана на свету. 2. Горение метана, этилена, ацетилена. 3. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной во де. 4. Окисление толуола раствором перманганата калия. 5. Получение этилена реакцией дегидратации этанола, ацетилена гидролизом карбида кальция. 6. Получение стирола деполимеризацией полистирола и испытание его отношения к раствору перманганата калия. Лабораторные опыты. Составление моделей молекул алканов. Взаимодействие алканов с бромом. Составление моделей молекул непредельных соединений. Практическая работа № 2. Составление моделей молекул углеводородов.

Практическая работа № 3. Получение этилена и опыты с ним.

Контрольная работа № 2 по теме «Углеводороды».

Тема 4. Кислородсодержащие органические соединения (19 ч)

С п и р т ы. Номенклатура и изомерия спиртов, Токсическое действие на организм метанола и этанола. Физические свойства предельных одноатомных спиртов. Химические свойства спиртов (кислотные свойства, реакции замещения гидроксильной группы на галоген, межмолекулярная и внутримолекулярная дегидратация, окисление, реакции углеводородного радикала). Алкоголяты. Гидролиз, алкилирование (синтез простых эфиров по Вильямсону). Промышленный синтез метанола. Многоатомные спирты. Этиленгликоль и глицерин, их физические и химические свойства. Синтез диоксана из этиленгликоля. Токсичность этиленгликоля. Качественная реакция на многоатомные спирты. Простые эфиры как изомеры предельных одноатомных спиртов. Сравнение их физических и химических свойств со спиртами. Реакция расшепления простых эфиров иодоводородом. Ф е н о л ы. Номенклатура и изомерия. Взаимное влияние групп атомов на примере фенола. Физические и химические свойства фенола и крезолов. Кислотные свойства фенолов в сравнении со спиртами. Реакции замещения в бензольном кольце (галогенирование, нитрование). Окисление фенолов. Качественные реакции на фенол. Применение фенола. Карбонильной группы. Альдегиды и кетоны. Физические свойства формальдегида, ацетальдегида, ацетона. Понятие о кето-енольной таутомерии карбонильных соединений. Реакции присоединения воды, спиртов, циановодорода и гидросульфита натрия. Сравнение реакционной способности альдегидов и кетонов в реакциях присоединения. Реакции замещения атомов водорода при α-углеродном атоме на галоген. Полимеризация формальдегида и ацетальдегида. Синтез спиртов взаимодействием карбонильных соединений с реактивом Гриньяра. Окисление карбонильных соединений. Сравнение окисления альдегидов и кетонов. Восстановление карбонильных соединений в спирты. Качественные реакции на альдегидную группу. Реакции альдольно-кротоновой конденсации. Особенности формальдегида. Реакция формальдегида с фенолом. К а р б о н о в ы е к и с л о т ы. Электронное строение карбоксильной группы. Гомологический ряд предельных одноосновных карбоновых кислот. Физические свойства карбоновых кис-

лот на примере муравьиной, уксусной, пропионовой, пальмитиновой и стеариновой кислот. Химические свойства карбоновых кислот. Кислотные свойства (изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями, солями). Изменение силы карбоновых кислот при введении донорных и акцепторных заместителей. Взаимодействие карбоновых кислот со спиртами (реакция этерификации). Галогенирование карбоновых кислот в боковую цепь. Особенности муравьиной кислоты. Важнейшие представители класса карбоновых кислот и их применение. Получение муравьиной и уксусной кислот в промышленности. Высшие карбоновые кислоты. Шавелевая кислота как представитель дикарбоновых кислот. Представление о непредельных и ароматических кислотах. Особенности их строения и свойств. Значение карбоновых кислот. Функциональные производные карбоновых кислот. Получение хлорангидридов и ангидридов кислот, их гидролиз. Получение сложных эфиров с использованием хлорангидридов и ангидридов кислот. Сложные эфиры как изомеры карбоновых кислот. Сравнение физических свойств и реакционной способности сложных эфиров и изомерных им карбоновых кислот. Гидролиз сложных эфиров. Синтез сложных эфиров фенолов. Сложные эфиры неорганических кислот. Нитроглицерин. Амиды. Соли карбоновых кислот, их термическое разложение в присутствии щелочи. Синтез карбонильных соединений разложением кальциевых солей карбоновых кислот.

Демонстрации. 1. Взаимодействие натрия с этанолом. 2. Окисление этанола оксидом меди. 3. Горение этанола. 4. Взаимодействие трет-бутилового спирта с соляной кислотой. 5. Иодоформная реакция. 6. Качественная реакция на многоатомные спирты. 7. Качественные реакции на фенолы. 8. Определение альдегидов при помощи качественных реакций. 9. Окисление альдегидов перманганатом калия. 10. Получение сложных эфиров.

Лабораторные опыты. 5. Свойства этилового спирта. 6. Свойства глицерина. 7. Свойства фенола. Качественные реакции на фенолы. 8. Свойства формалина. 9. Свойства уксусной кислоты. 10. Соли карбоновых кислот.

Практическая работа № 4. Получение бромэтана.

Практическая работа № 5. Получение ацетона.

Практическая работа № 6. Получение уксусной кислоты.

Практическая работа № 7. Получение этилацетата.

<u>Практическая работа № 8.</u> Решение экспериментальных задач по теме «Кислородсодержащие органические вещества».

Контрольная работа № 3 по теме «Кислородсодержащие органические вещества».

Тема 5. Азот- и серосодержащие соединения (6 ч)

Нитросоединения. Электронное строение нитрогруппы. Получение нитросоединений. Взрывчатые вещества. А м и н ы. Изомерия аминов. Первичные, вторичные и третичные амины. Физические свойства простейших аминов. Амины как органические основания. Соли алкиламмония. Алкилирование и ацилирование аминов. Реакции аминов с азотистой кислотой. Ароматические амины. Анилин. Взаимное влияние групп атомов в молекуле анилина. Химические свойства анилина (основные свойства, реакции замещения в ароматическое ядро, окисление, ацилирование). Диазосоединения. Получение аминов из спиртов и нитросоединений. Применение анилина. Сероорганические соединения. Представление о сероорганических соединениях. Особенности их строения и свойств. Значение сероорганических соединений.

Гетероциклов. Электронное строение молекулы пиррола. Кислотные свойства пиррола. Пиридин как представитель шестичленных гетероциклов. Электронное строение молекулы пиридина. Основные свойства пиридина, реакции замещения с ароматическим ядром. Представление об имидазоле, пиридине, пурине, пуриновых и пиримидиновых основаниях. Демонстрации. 1. Основные свойства аминов. 2. Качественные реакции на анилин. 3. Анилиновые красители. 4. Образцы гетероциклических соединений.

Лабораторные опыты. Качественные реакции на анилин.

<u>Практическая работа № 9</u>. Решение экспериментальных задач по теме «Азотсодержащие органические вещества».

Тема 6. Биологически активные

вещества (14/19 ч)

Жи р ы как сложные эфиры глицерина и высших карбоновых кислот. Омыление жиров. Гидрогенизация жиров. Мыла как соли высших карбоновых кислот.

У г л е в о д ы. Моно- и дисахариды. Функции углеводов. Биологическая роль углеводов. Глюкоза — физические свойства, линейная и циклическая формы. Реакции глюкозы (окисление азотной кислотой, восстановление в шестиатомный спирт), качественные реакции на глюкозу. Брожение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Понятие о гликозидах. Д и с а х а р и д ы. Сахароза как представитель невосстанавливающих дисахаридов. Мальтоза и лактоза, целлобиоза. Гидролиз дисахаридов. Получение сахара из сахарной свеклы. П о л и с а х а р и д ы. Крахмал, гликоген, целлюлоза. Качественная реакция на крахмал. Гидролиз полисахаридов.

Н у к л е и н о в ы е к и с л о т ы. Нуклеозиды. Нуклеотиды. Нуклеинове кислоты как природные полимеры. Строение ДНК и РНК. Гидролиз нуклеиновых кислот. А м и н о к и с л о т ы как амфотерные соединения. Реакции с кислотами и основаниями. Образование сложных эфиров. Пептиды. Пептидная связь. Амидный характер пептидной связи. Гидролиз пептидов. Белки. Первичная, вторичная и третичная структуры белков. Качественные реакции на белки. *Демонстрации*. 1. Растворимость углеводов в воде и этаноле.

2. Качественные реакции на глюкозу. 3. Образцы аминокислот. Лабораторные опыты. 11. Свойства глюкозы. Качественная реакция на глюкозу. Определение крахмала в продуктах питания. 12. Цветные реакции белков.

Контрольная работа № 4 по теме «Азотсодержащие и биологически активные органические вещества».

Тема 7. Высокомолекулярные соединения (4 ч)

Понятие о высокомолекулярных веществах. Полимеризация и поликонденсация как методы создания полимеров. Эластомеры. Природный и синтетический каучук. Сополимеризация. Современные пластики (полиэтилен, полипропилен, полистирол, поливинилхлорид, фторопласт, полиэтилентерефталат, акрил-бутадиен-стирольный пластик, поликарбонаты). Природные и синтетические волокна (обзор).

Демонстрации. 1. Образцы пластиков. 2. Коллекция волокон.

3. Поликонденсация этиленгликоля с терефталевой кислотой. *Лабораторные опыты*. 13. Отношение синтетических волокон к растворам кислот и щелочей.

Практическая работа № 10. Распознавание пластиков.

Практическая работа № 11. Распознавание волокон.

Tема 1. Неметаллы (31/42 ч)

К л а с с и ф и к а ц и я н е о р г а н и ч е с к и х в е щ е с т в. Элементы металлы и неметаллы и их положение в Периодической системе. В о д о р о д. Получение, физические и химические свойства (реакции с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы. Г а л о г е н ы. Общая характеристика подгруппы. Физические свойства простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Порядок вытеснения галогенов из растворов галогенидов. Особенности химии фтора. Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Кислородные соединения хлора. Гипохлориты, хлорат и перхлораты как типичные окислители. Особенности химии брома и иода. Качественная реакция на йод. Галогеноводороды — получение, кислотные и восстановительные свойства. Соляная кислота и ее соли. Качественные реакции на галогенид-ионы.

Элементы подгруппы. Физические свойства простых веществ. Озон как аллотропная модификация кислорода. Получение озона. Озон как окислитель. Позитивная и негативная роль озона в окружающей среде. Сравнение свойств озона и кислорода. Вода и пероксид водорода как водородные соединения кислорода — сравнение свойств. Пероксид водорода как окислитель и восстановитель. Пероксиды металлов. Сера. Аллотропия серы. Физические и химические свойства серы (взаимодействие с металлами, кислородом, водородом, растворами щелочей, кислотами-окислителями). Сероводород — получение, кислотные и восстановительные свойства. Сульфиды. Сернистый газ как кислотный оксид. Окислительные и восстановительные свойства сернистого газа. Получение сернистого газа в промышленности и лаборатории. Сернистая кислота и ее соли. Серный ангидрид.

Серная кислота. Свойства концентрированной и разбавленнойсерной кислоты. Действие концентрированной серной кислотына сахар, металлы, неметаллы, сульфиды. Термическая устойчивость сульфатов. Качественная реакция на серную кислоту и ее соли. Тиосерная кислота и тиосульфаты.

А з о т и е г о с о е д и н е н и я. Элементы подгруппы азота. Общая характеристика подгруппы. Физические свойства простых веществ. Строение молекулы азота. Физические и химические свойства азота. Получение азота в промышленности и лаборатории. Нитриды. Аммиак — его получение, физические и химические свойства. Основные свойства водных растворов аммиака. Соли аммония. Поведение солей аммония при нагревании. Аммиак как восстановитель. Применение аммиака. Оксиды азота, их получение и свойства. Оксид азота(I). Окислениеоксида азота(II) кислородом. Димеризация оксида азота(IV). Азотистая кислота и ее соли. Нитриты как окислители и восстановители. Азотная кислота — физические и химические свойства, получение. Отношение азотной кислоты к металлам и неметаллам. Зависимость продукта восстановления азотной кислоты от активности металла и концентрации кислоты. Термическая устойчивость нитратов.

Ф о с ф о р и е г о с о е д и н е н и я. Аллотропия фосфора. Химические свойства фосфора (реакции с кислородом, галогенами, металлами, сложными веществами-окислителями, щелочами). Получение и применение фосфора. Фосфорный ангидрид. Ортофосфорная и метафосфорная кислоты и их соли. Качественная реакция на ортофосфаты. Разложение ортофосфорной кислоты. Пирофосфорная кислота и пирофосфаты. Фосфиды. Фосфин. Хлориды фосфора. Оксид фосфора(III), фосфористая кислота и ее соли.

У г л е р о д. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма углерода. Графен как монослой графита. Углеродные нанотрубки. Уголь. Активированный уголь. Адсорбция. Химические свойства угля. Карбиды. Гидролиз карбида кальция и карбида алюминия. Карбиды переходных металлов как сверхпрочные материалы. Оксиды углерода. Образование угарного газа при неполном сгорании угля. Уголь и угарный газ как восстановители. Реакция угарного газа с расплавами щелочей. Синтез

формиатов и оксалатов. Углекислый газ. Угольная кислота и ее соли. Поведение средних и кислых карбонатов при нагревании.

К р е м н и й. Свойства простого вещества. Реакции с хлором, кислородом, растворами щелочей. Оксид кремния в природе и технике. Кремниевые кислоты и их соли. Гидролиз силикатов. Силан — водородное соединение кремния.

Б о р. Оксид бора. Борная кислота и ее соли. Бура.

Демонстрации. 1. Горение водорода. 2. Получение хлора (опыт в пробирке). 3. Опыты с бромной водой. 4. Окислительные свойства раствора гипохлорита натрия. 5. Плавление серы. 6. Горение серы в кислороде. 7. Взаимодействие железа с серой. 8. Горение сероводорода. 9. Осаждение сульфидов. 10. Свойства сернистого газа. 11. Действие концентрированной серной кислоты на медь и сахарозу. 12. Растворение аммиака в воде. 13. Основные свойства раствора аммиака. 14. Каталитическое окисление аммиака. 15. Получение оксида азота(II) и его окисление на воздухе. 16. Действие азотной кислоты на медь. 17. Горение фосфора в кислороде. 18. Превращение красного фосфора в белый и его свечение в темноте. 19. Взаимодействие фосфорного ангидрида с водой. 20. Образцы графита, алмаза, кремния. 21. Горение угарного газа. 22. Тушение пламени углекислым газом. 23. Разложение мрамора. Лабораторные опыты. 1. Получение хлора и изучение его свойств. 2. Ознакомление со свойствами хлорсодержащих отбеливателей. Качественная реакция на галогенид-ионы. 3. Свойства брома, иода и их солей. Разложение пероксида водорода. Окисление иодид-ионов пероксидом водорода в кислой среде. 4. Изучение свойств серной кислоты и ее солей. 5. Изучение свойств водного раствора аммиака. 6. Свойства солей аммония. Качественная реакция на фосфат-ион. 7. Качественная реакция на карбонат-ион. Разложение гидрокарбоната натрия. 8. Испытание раствора силиката натрия индикатором. 9. Ознакомление с образцами природных силикатов.

Практическая работа № 1. Получение водорода.

Практическая работа № 2. Получение хлороводорода и соляной кислоты.

Практическая работа № 3. Получение аммиака и изучение его свойств.

Практическая работа № 4. Получение углекислого газа.

Практическая работа № 5. Выполнение экспериментальных задач по теме «Неметаллы».

Контрольная работа № 1 по теме «Неметаллы».

Тема 2. Металлы (30/ч)

О б щ и й о б з о р э л е м е н т о в — м е т а л л о в. Свойства простых веществ-металлов. Металлические кристаллические решетки. Сплавы. Характеристика наиболее известных сплавов. Получение и применение металлов. Щ е л о ч н ы е м е т а л л ы — общая характеристика подгруппы, характерные реакции натрия и калия. Свойства щелочных металлов. Получение щелочных металлов. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения Окраска пламени солями щелочных и щелочноземельных металлов.

А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления.

О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор.

Металлыпобочных подгрупп. Особенности строения атомов переходных металлов.

Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления. Амфотерные свойства оксида и гидроксида хрома(III). Окисление солей хрома(III) в хроматы. Взаимные переходы хроматов и дихроматов. Хроматы и дихроматы как окислители.

Ма р г а н е ц — физические и химические свойства (отношение к кислороду, хлору, растворам кислот). Оксид марганца(IV) как окислитель и катализатор. Перманганат калия как окислитель. Манганат(VI) калия и его свойства.

Же л е з о. Нахождение в природе. Значение железа для организма человека. Физические свойства железа. Сплавы железа с углеродом. Химические свойства железа (взаимодействие с кислородом, хлором, серой, углем, кислотами, растворами солей). Сравнение кислотноосновных и окислительно-восстановительных свойств гидроксида железа(II) и гидроксида железа(III). Соли железа(III) и железа(III). Методы перевода солей железа(III) в соли железа(III) и обратно. Окислительные свойства соединений железа(III) в реакциях с восстановителями (иодидом, медью). Цианидные комплексы железа. Качественные реакции на ионы железа(III) и (III).

Ме д ь. Нахождение в природе. Физические и химические свойства (взаимодействие с кислородом, хлором, серой, кислотами-окислителями). Соли меди(II). Медный купорос. Аммиакаты меди(I) и меди(II). Получение оксида меди(I) восстановлением гидроксида меди(II) глюкозой.

С е р е б р о. Физические и химические свойства (взаимодействие с серой, хлором, кислотамиокислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра.

3 о л о т о. Физические и химические свойства (взаимодействие с хлором, «царской водкой». Способы выделения золота из золотоносной породы.

Ц и н к. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, растворами кислот и щелочей). Амфотерность оксида и гидроксида цинка.

- Р т у т ь. Представление о свойствах ртути и ее соединениях. Демонстрации. 1. Коллекция металлов. 2. Коллекция минералов и руд. 3. Коллекция «Алюминий». 4. Коллекция «Железо и его сплавы» 5. Взаимодействие натрия с водой. 6. Окрашивание пламени солями щелочных и щелочноземельных металлов. 7. Взаимодействие кальция с водой. 8. Плавление алюминия.
- 9. Взаимодействие алюминия со щелочью. 10. Взаимодействие хрома с соляной кислотой без доступа воздуха. 11. Осаждение гидроксида хрома(III) и окисление его пероксидом водорода.
- 12. Взаимные переходы хроматов и дихроматов. 13. Разложение дихромата аммония. 14. Алюмотермия. 15. Осаждение гидроксида железа(III) и окисление его на воздухе. 16. Выделение серебра из его солей действием меди.

Лабораторные опыты.

10. Окрашивание пламени соединениями щелочных металлов. 11. Ознакомление с минералами и важнейшими соединениями щелочных металлов. 12. Свойствасоединений щелочных металлов. 13. Окрашивание пламени солями щелочноземельных металлов. 14. Свойства магния и его соединений. 15. Свойства соединений кальция. 16.Жесткость воды. 17. Взаимодействие алюминия с кислотами и щелочами. 18. Амфотерные свойства гидроксида алюминия. 19. Свойства олова, свинца и их соединений. 20. Свойства солей хрома. 21. Свойства марганца и его соединений. 22. Изучение минералов железа. 23. Свойства железа. Качественные реакции на ионы железа. Получение оксида меди(I). 24. Свойства меди, ее сплавов и соединений. 25. Свойства цинка и его соединений.

Практическая работа № 6. Получение горькой соли (семиводного сульфата магния).

Практическая работа № 7. Получение алюмокалиевых квасцов.

<u>Практическая работа № 8</u>. Выполнение экспериментальных задач по теме «Металлы главных подгрупп».

Практическая работа № 9. Получение медного купороса.

Практическая работа № 10. Получение железного купороса.

<u>Практическая работа № 11</u>. Выполнение экспериментальных задач по теме «Металлы побочных подгрупп».

Контрольная работа № 2 по теме «Металлы».

Тема 3. Строение атома.

Химическая связь (8 ч)

С т р о е н и е а т о м а. Нуклиды. Изотопы. Типы радиоактивного распада. Термоядерный синтез. Получение новых элементов. Ядерные реакции. Строение электронных оболочек атомов. Представление о квантовой механике. Квантовые числа. Атомные орбитали. Радиус атома. Электроотрицательность. Х и м и ч е с к а я с в я з ь. Виды химической связи. Ковалентная связь и ее характеристики (длина связи, полярность, поляризуемость, кратность связи). Ионная связь. Металлическая связь. С т р о е н и е т в е р д ы х т е л. Кристаллические и аморфные тела. Типы кристаллических решеток металлов и ионных соединений. Межмолекулярные взаимодействия. Водородная связь.

Демонстрации. 1. Кристаллические решетки. 2. Модели молекул.

Тема 4. Основные закономерности протекания химических реакций (17 ч)

Тепловой эффектхимические реакции. Закон Гесса. Теплота образования вещества. Энергия связи. Понятие об энтальпии. Понятие об энтропии. Второй закон термодинамики. Энергия Гиббса и критерии самопроизвольности химической реакции. С к о р о с т ь х и м и ч е с к и х р е а к ц и й и ее зависимость от природы реагирующих веществ, концентрации реагентов, температуры, наличия катализатора, площади поверхности реагирующих веществ. Закон действующих масс. Правило Вант-Гоффа. Понятие об энергии активации и об энергетическом профиле реакции. Гомогенный и гетерогенный катализ. Примеры каталитических процессов в технике и в живых организмах. Ферменты как биологические катализаторы. О б р а т и м ы е р е а к ц и и. Химическое равновесие. Принцип Ле Шателье. Константа равновесия. Равновесие в растворах. Константы диссоциации. Расчет рН растворов сильных кислот и щелочей. Произведение растворимости. Рядактивностиметаллов. Понятие о стандартном электродном потенциале и электродвижущей силе реакции. Химические источники тока: гальванические элементы, аккумуляторы и топливные элементы. Электролиз расплавов и водных растворов электролитов. Законы электролиза.

Демонстрации. 1. Экзотермические и эндотермические химические реакции. 2. Тепловые явления при растворении серной кислоты и аммиачной селитры. 3. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. 4. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. 5. Разложение пероксида водорода с помощью неорганических катализаторов и природных объектов, содержащих каталазу.

Лабораторные опыты. Факторы, влияющие на взаимодействие металла с растворами кислот. Смещение химического равновесия при увеличении концентрации реагентов и продуктов. 26. Каталитическое разложение пероксида водорода

Практическая работа № 12. Скорость химической реакции.

Практическая работа № 13. Химическое равновесие.

Контрольная работа № 3. Теоретические основы химии.

Тема 5. Химическая технология (7 ч)

О с н о в н ы е п р и н ц и п ы х и м и ч е с к о й т е х н ол о г и и. П р о и з в о д с т в о с е р н о й к и с л о т ы контактным способом. Химизм процесса. Сырье для производства серной кислоты. Технологическая схема процесса, процессы и аппараты. П р о и з в о д с т в о а м м и а к а. Химизм процесса. Определение оптимальных условий проведения реакции. Принцип

циркуляции и его реализация в технологической схеме. Ме т а л л у р г и я. Черная металлургия. Доменный процесс (сырье, устройство доменной печи, химизм процесса). Производство стали в кислородном конвертере и в электропечах. О р г а н и ч е с к и й с и н т е з. *Синтезы на основе синтез-газа*. Производство метанола. Экология и проблема охраны окружающей среды. Зеленая химия.

Демонстрации. 1. Сырье для производства серной кислоты. 2. Модель кипящего слоя. 3. Железная руда. 4. Образцы сплавов железа.

Тема 6. Химия в быту и на службе общества (9ч)

Химия пищи. Жиры, белки, углеводы, витамины. Пищевые добавки, их классификация. Запрещенные и разрешенные пищевые добавки. Лекарственные средства. Краски и пигменты. Принципы окрашивания тканей. Химия в строительстве. Цемент, бетон. Стекло и керамика. Традиционные и современные керамические материалы. Сверхпроводящая керамика. Бытовая химия. Отбеливающие средства. Химия в сельском хозяйстве. Инсектициды и пестициды. Средства защиты растений. Репелленты. Особенности современной науки. Методология научного исследования. Профессия химика. Математическая химия. Поиск химической информации. Работа с базами данных.

Демонстрации. 1. Пищевые красители. 2. Крашение тканей. 3. Отбеливание тканей. 4. Керамические материалы. 5. Цветные стекла. 6. Коллекция средств защиты растений. 7. Коллекция «Топливо и его виды». 8. Примеры работы с химическими базами данных.

Лабораторные опыты. 27. Знакомство с моющими средствами. Знакомство с отбеливающими средствами. 28. Клеи. 29. Знакомство с минеральными удобрениями и изучение их свойств. <u>Практическая работа № 14.</u> Крашение тканей.

Контрольная работа № 4. Итоговая контрольная работа.